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SUMMARY 
The present work is devoted to the numerical simulation of two important phenomena in the field of solid 
propellant rocket motors: the first is acoustic boundary layers that develop above the burning propellant; the other 
is a periodic vortex-shedding phenomenon which is the result of a strong coupling between the instability of mean 
flow shear layers and acoustic motions in the chamber. To predict the acoustic boundary layer, computations were 
performed for the lower half of a rectangular chamber with bottom-side injection. The outflow pressure is 
sinusoidally perturbed at a given frequency. For the highest CFL numbers the implicit scheme is not able to 
compute the unsteadiness in the acoustic boundary layer. With very low CFL numbers or with the explicit scheme 
the main features of the acoustic field are captured. To simulate the vortex-shedding mechanism in a segmented 
solid rocket motor, the explicit version is used. This computation shows a mechanism for ‘self-excited’ vortex 
shedding close to the second axial mode frequency. The use of the flux-splitting technique reduces substantially 
the amplitude of the oscillations. A few iterations are done with flux splitting, then the computation is performed 
without this technique. In this case both the frequency and the intensity are well predicted. A geometry more 
representative of the solid rocket motor is also computed. In this case the vortex-shedding process is more complex 
and pairing is observed. 
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1. INTRODUCTION 
This work is part of the overall combustion stability assessment of the Ariane 5 P230 MPS solid motor 
and has been supported by CNES within a research programme managed by ONERA. For this motor it 
is believed that there exists a severe risk of instability. The Occurrence of low-amplitude but sustained 
oscillations pulsating at a frequency associated with one or more acoustic modes of the combustion 
cavity affects motor  performance^.'-^ The unsteady or acoustic boundary layer that develops above the 
burning propellant appears to be an important feature of rocket motor stability. Such boundary layers 
are responsible for flow-turning losses4s5 and govern the local unsteadiness of the flow. The burning 
propellant acts as the source of energy driving acoustic mode excitation. Instability occurs when the 
energy supplied by the combustion process excites one or more of the natural modes of the 
combustor.6 This driving by the solid propellant combustion depends upon the space evolution of flow 
oscillation near the propellant surface. Hence it can be pressure or velocity coupling. An 
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approximation of the oscillation frequency is obtained by using the equation of resonance' f = na/2L 
for a closed-closed cavity or f = (2n - l)a/4L for a closed-open cavity. 

An additional mechanism that drives pressure oscillations in rocket motors is vortex shedding.'** 
This vortex shedding can interact with the chamber acoustics to generate pressure os~i l la t ions.~~'~ 
Owing to the segmented design of solid propellant rocket motors, shear layers induced by surface 
discontinuities appear and can produce vortex shedding. The dipole mechanism involving the 
interaction of vortices with an impingement surface is one way that energy passes from the vortex 
fluctuations to the acoustic field. The interaction between vortices and an impingement surface causes 
fluctuating forces on the surface. Acoustically, the fluctuating force is equivalent to a dipole." The 
energy transfer depends on the distance between the separation point and the impingement ~urface.~ 
There are locations relative to the mode shape which are preferred for amplifi~ation.*~*'~ Also, the 
presence of amplifying shear layers and reflecting surfaces can produce resonant acoustic energy flows 
into frequencies governed by the resonance condition produced by a non-linear quadratic interaction 
between the various modes of o~cillation.~ In the rocket motor the vortex shedding is periodic.2v8 It is 
the result of a strong coupling between the instability of mean shear flow and the organ-pipe acoustic 
mode in the chamber. The feedback from the acoustic wave provides the control signal for the 
hydrodynamic instability. Ln the presence of an acoustic wave in the correct frequency range a strong 
correlative signal is present which organizes the vortical disturbance. Moreover, significant increases in 
acoustic pressure amplitude can be generated by coupling from periodic vortex shedding.I2 Examples 
of cases where the unstable separated flows can couple with the acoustics to produce a significant 
source of energy are the cavity tone, edge tone, hole tone and ring tone. The internal configuration of 
segmented solid propellant motors can present one or often more of these couplings. The shedding 
frequency of periodic vortex flows can be characterized by the Strouhal S = f l / u ,  where u 
is the velocity on the centreline and I is the characteristic length (it can be the transverse dimension of 
the disturbing body or the length between resistor pairs). 

The 
stability analysis of a motor is often equivalent to determining whether the acoustic modes grow or 
decay. Predictions of stability are made by identification of both the acoustic energy gains and losses in 
the motor.' Two different models have been developed to predict the acoustic oscillation in a motor:4" 
the flow-turning and admittance correction approaches. The flow-turning approach (one- or 
multidimensional analysis) has been widely used because of its relative simplicity, although the 
admittance correction approach seems more rigorous. Comparison between these two methods and 
experimental results shows better prediction with the admittance correction model.4 These stability 
models are based on a quasi-incompressible mean flow field assumption. Thus the choked ejection 
nozzle is not concerned by this analysis. The aft-end plane has to be located within the low-Mach- 
number domain. Also, in the rocket motor the initial region of linear spatial growth, where the unstable 
shear layer is amplified and periodic shedding of vortices is observed, is followed by a zone of complex 
non-linear interaction in which vortex pairing may take place. 

Because of the complexity of the problem, an analytical solution to the governing equations with 
complex boundary conditions is not possible. Numerical simulations, if performed properly, may 
provide important help in understanding the complex physics. Numerical simulations of unsteady 
compressible flow have been developed.' ',I6 Such simulations should naturally couple mean flow 
shear layer and acoustic motions. Numerical methods have been performed to isolate and study the 
interaction between acoustic waves and vortex structures. This interaction has been studied in an 
axisymmetric ramjet combustor. 16-" Vuillot and Avalon" and Lupoglazoff and Vuillot" used the 
MacCormack explicit scheme with artificial viscosity to compute the acoustic-mean flow interaction. 

The present work is also concerned with numerical simulation. The aim of this paper is to present 
the ability of numerical codes to predict the unsteady behaviour inside the combustion chambers of 

Acoustic mode excitation can be predicted by linearized acoustic instability models. 
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solid propellant rocket motors. For this kind of computation the numerical methods must have good 
properties: good accuracy and stability, little artificial dissipation and small time consumption. Also, 
the scheme has to be non-dmipative and non-dispersive.21 Thus in this paper the dissipative and 
dispersive errors will be examined. The numerical method is a version of the explicit-implicit 
MacCormack method. To avoid the use of artificial viscosity, a flux-splitting technique can be used. 
Three test cases will be presented in this paper and different numerical options of the scheme will be 
tested. 

The first test case concerns an acoustic boundary layer simulation. Two-dimensional (2D) 
computations were performed for the lower half of a rectangular chamber with bottom-side injection. 
Before performing the unsteady calculation, an initial condition corresponding to a steady state 
solution is obtained by using an implicit version of the numerical scheme. Starting from this steady 
solution, the unsteady calculation was done. 

The second test case is devoted to the vortex-shedding phenomenon inside a 2D test case solid 
propellant motor. In this part only the explicit version is used. The computations show the ability of the 
code to simulate the vortex shedding and to predict the coupling between the instability of the mean 
flow shear layers and the acoustic motion. 

The last case concerns a more realistic solid rocket motor geometry. The configuration is 
axisymmetric and the multiblock technique is used. 

2. METHODOLOGY 

2. I .  Governing equations 

The physical model used involves the full Navier-Stokes equations. This model describes the 
conservation of mass, momentum and total energy. These equations can be written in vector form as 

W =  

G =  

with 

= { 1, axisymmetric 
0, 2D, 
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To close this set of equations, the pressure is related to the other state variables p and Tby the law of 
state for perfect gases. 

2.2. Numerical method 

The numerical method is a version of the explicit-implicit MacConnack ~cheme.’’’~~ It consists of a 
predictor-corrector approach. For each time step an explicit increment is evaluated using forward or 
backward approximations for the inviscid part and central differences for the viscous terms. To m o v e  
the severe explicit stability restriction, this increment is updated with an implicit approximation of its 
evolution equation. This equation is obtained by taking the time derivative of the original motion 
equation: 

The implicit approximation can be written as 

(3) 

with the implicit and explicit increments written respectively as 

awn 

at 
AW = -At. 

a w n + l  

at 6 W = -  At, 

In the previous equations the Jacobian matrices A = 6F/S W and B = SG/S W include inviscid and 

Finally, the two steps of the scheme can be written as follows: for the predictor step, 
viscous contributions. 

for the corrector step, 

= ;(W(n) + w(“+‘) + 6fl+’)). 

In order to improve the numerical efficiency, various ingredients have been included in the method. 
The most significant are the second-orda-accurate flux splitting and a Gauss-Seidel line relaxation 
technique. The use of the flux-splitting technique was motivated by the need for a better description of 
discontinuities and a more rigourous treatment of the boundary  condition^.^^ The flux splitting used 
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here is close to the one developed by Steger and War1ning.2~~~~ It has the desirable property of 
enforcing the diagonally dominant character of the implicit matrix operator. Furthennore, the Gauss- 
Seidel line relaxation method avoids the use of approximate factorization and allows the use of 
unbounded CFL numbers. 

2.3. Computational domains 

In this paper three different configurations are computed. Figure la presents the first one (case I). 
The geometry is the lower half of a rectangular chamber with a blowing surface at the lower wall 
(h = 20 mm, L = 581 mm). The upper boundary is a plane of symmetry. The left side (head end) is a 

Figurc 1. Computational domains: a, case I; b, case n; c, case 111 
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rigid wall and the outflow boundary is at the right side. The mesh used (100 x 50) is characterized by a 
longitudinally uniform partition (Ax=L/99) and a stretched one in the lateral direction 
(Afi= 1.05026Ay,-1, with Ay0=0.1 mm). 

The second computational configuration (case 11) is presented in Figure 1 b. The grid is the same as 
the one used by Lupoglazoff and Vuillot.20 This test case involves a sheared flow at the right-hand-side 
comer of the propellant grain. The length of the chamber was chosen in such a way that the first mode 
frequency was close to the critical frequency of the shear layer Cf,, = 1320 Hz). The length of this plane 
motor is 0.47 m with 0.2 m length grain. 

The last test case computed (case 111) is based on a segmented motor model. This case is 
axisymmetric and required a multiblock technique. It represents configuration A of the ONERA LP3 
experiment. The chosen sequence corresponds to 20 mm of burning propellant, where an important 
instability at the third mode (900 Hz) was observed. The calculation was done with a coarse mesh 
(3000 points). The geometry and the mesh was presented in Figure lc. The configuration is divided 
into five blocks. 

2.4. Boundary and initial conditions 

The boundary conhtions imposed for the three computations are given in Table I. A1-A5 in this 
table are defined Figure 1. 

The no-slip condition is imposed at the inert wall where the velocity and normal pressure gradient 
are equal to zero. At the injecting wall the mass flow rate, the temperature and zero tangential velocity 
are specified. For subsonic outflow the static pressure is fixed. For case I the static pressure value 
simulates a nozzle with an inlet-to-throat area ratio of five. In the case of supersonic outflow, classical 
first-order extrapolations are used. 

For initial conditions the three computations are started from rest. 

2.5. Physical values 

Table I1 presents the physical values for case I. For the vortex-shedding cases the values used are 
given in Table 111. 

2.6. Numerical parameters and performances 

Acoustic boundary layer case. For this case we compute first a steady solution with the implicit 
scheme and then the unsteady solution with both implicit and explicit schemes. The CPU times used 
for these different computations are given in Table IX 

For the unsteady case the implicit option has been tested with three different CFL numbers (Table 
V). Each one corresponds to a different number of iterations per period. 

Table I. Boundary conditions 

Case Head end Aft end Internal side External side 

I No slip Subsonic outflow symmetry Injecting wall 
I1 No slip Supersonic outflow Symmetry Al:  injecting wall 

I11 No-slip Supersonic outflow symmetry A2, A4: injecting wall 
A2: no-slip condition 

A l ,  A3, AS: no-slip condition 
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Table 11. Physical values for case I (SI units) 

R Y m T P Pr a 

286.7 1.4 2.42 303 1.9 x 1 0 - ~  1 348.7 

Table 111. Physical values for cases I1 and 111 (SI units) 

I1 1633 13 x lo-’ 21.201 3387 1075.43 299.53 36 x lo-’ 1.14 1 
111 1640 7.38 x lo-’ 12.1032 2700 1061.27 340.53 8.1 x lo-’ 1.225 1 

Table Iv. CPU time and machine used 

Case 

Steady 
Steady 
Unsteady 
Unsteady 
Unsteady 
Unsteady 

Scheme 

Implicit 
Implicit 
Implicit 
Implicit 
Implicit 
Explicit 

Number of iterations 

900 
900 

50/period 
200/period 
500/period 

20000/period 

CPU time (s) 

27900 
39600 
2200/period 
8800/period 

22000/period 
28000/period 

Machine 

Convex C220 
Alliant FXSO 
Alliant FX80 
Alliant FXSO 
Alliant FX80 
Alliant FX80 

Table V. Different CFL numbers used 

CFL number 460 115 46 
Iterations/period 50 200 500 

2 0  vortex-shedding case. For this test case calculation only the explicit version is used with or 
without the flux-splitting technique. The time step is dt= 1.623 x lop7  s and 350,000 iterations have 
been performed. The computation was done on a Convex C220 computer and for one time step 
0.9 CPU second is needed. 

hisymmetric vortex-shedding case. This case is computed with the explicit version and without the 
flux-splitting technique. For the mesh used, the time step is dt = 0.5 x lo-’ s and 300,000 iterations 
have been performed. For one time step 0.48 CPU second is needed on the Convex C220. 

3. RESULTS 
3.1. Acoustic boundary layer 

This test case was defined in order to evaluate the ability of the numerical scheme to simulate the 
effect of periodic oscillations on an injected boundary layer. 

Before performing unsteady computations, a steady solution has been evaluated. The computation is 
started from rest with the outlet pressure equal to 1-5 x 10’ pa 

The steady solution has been reached after 900 iterations with the implicit version of the code. The 
steady state is shown in Figure 2. The maximum Mach number obtained inside the chamber is 0.1787. 
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I S O M A C H  LINES 

I ----I 
min = 0. max =O. 1787 

ISO-ENTROPY LINES 
I 

min = 11.1445 mnx=11.154? 

ISOVORTICITY LINES 

; 
F i g m  2. Steady acoustic boundary layer 

This solution is very close to the analytical one obtained in the incompressible case. The well-known 
cosine velocity profiles for the 2D planar chamber are ~b ta ined .~~-~’  

The previous steady solution is now used as an initial condition for the unsteady computation. The 
outflow static pressure is sinusoidally perturbed around its steady state value: 
P: = P,( 1 + a sin[2nf(t - to)]}, where a = 0-01 and f= 343 Hz. This forcing frequency has been 
chosen close to the first acoustic mode frequency (f= 1.143a/2L = 0.5715a/L) in order to have an 
acoustic pressure node inside the chamber. 

This case was computed with both explicit and implicit versions. We present first the results 
obtained with the explicit version, then we discuss the effect of using an implicit scheme to compute 
unsteady flow. 

The unsteady phase has been computed with the explicit version over 45 ms, corresponding to 15 
periods of the forced oscillating pressure. A periodic regime is reached after 25 ms (eight periods). The 
evolutions of the velocity components U and Vat different positions of the mid-chamber are plotted in 
Figure 3. For the U-component the mean value increases with the lateral position. The amplitude of the 
oscillation is maximum at a distance h m  the injection wall equal to 1.87 mm ( r /L  = 3-22 x 

Figure 4 shows the amplitude and phase partition of the centreplane acoustic pressure and 
longitudinal velocity. A pressure node is located at x / L  = 0.442. The transverse profiles of longitudinal 
velocity at different longitudinal positions are presented in Figure 5 .  These velocity profiles indicate 
that an unsteady shear wave is created by unsteady viscous forces and propagates away h m  the 
injecting wall. These evolutions are in good agreement with the analytical ones!p19J8 The scheme is 
able to capture approximately all the overshoots predicted by the analytical method. It is indicated that 
a damping due to the numerical viscosity does not affect the solution. When a coarse mesh is used, the 
last overshoot is not predicted.” The same problem occurs when the scheme is too dissipative (Van 
Leer flux sp~i t t ing) .~~ 

The implicit scheme allows minimization of the CPU times (Table rv). For this reason the implicit 
scheme is used to compute the unsteady case. The following tests were performed in order to evaluate 
the CFL number effects. 
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Figure 3. Time histories of velocity components for case I (x/L=0.5): a, r/L=6.45 x lon4; b, r /L=3 .22  x lo-’; 
c ,  r / ~ = 2 5 . 5  x 1 0 - ~  
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Figure 4. Centreplane acoustic pressure and axial velocity for case I: a, c, mpGde; b, d, phase (1, r/L=39.7 x lor3; 
2, r /L=lO-’;  3, r /L=8 .6  x lo-’) 

Figure 6 shows the head-end static pressure obtained with the different CFL values. For the three 
CFL numbers used, an unsteady phenomenon is predicted. However, for the higher value (460) an 
important damping of the signal amplitude is observed. When the CFL number decreases, this 
damping decreases. For the lower value of CFL number (46) the amplitude is approximately correct 
and the results are the same as those obtained with the explicit version. The consequence of this 
damping due to large CFL number is poor prediction of the position of the pressure node in the 
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Figure 5. Transverse profiles of acoustic velocity for case I: a, amplitude; b, phase ( 1 ,  x / L = 9 9 . 5  x lo-'; 2,  x / L = 4 8  x lo-'; 
3 , 4 ~ = 5  x 

chamber and hence bad prediction of the acoustic boundary layer. From these calculations we can 
conclude that with higher CFL numbers the implicit scheme is very dissipative and leads to an 
important damping. Hence for very large CFL numbers even the unsteadiness cannot be observed. 
Thus is is clear that we have to restrict ourselves to low CFL numbers (< 50). However, owing to the 
relative CPU cost of each method and considering that the level of accuracy of both methods is 
equivalent, in this case it is better to use an explicit version in as far as we are concerned with the 
unsteadiness. 

3.2. Vortex Shedding 

The two test cases here are concerned with simulation and analysis of the vortex-shedding 
mechanism in the solid propellant rocket motor. The first case is a simple two-dimensional 
configuration. The goal of this computation is the capture of the vortex shedding. The velocity and 
pressure signals obtained at different positions in the flow illustrate the unsteady organized character of 
the f l ~ w . ~ ~ . ~ '  The head-end pressure is shown in Figure 7. A periodic regime is reached after 28 ms. 
Figure 8 presents examples of the pressure and velocity time histories. The corresponding spectra are 
also reported. These spectra show a monochromatic character of the signal with a high peak at 
2570 Hz. This frequency is close to the second axial mode frequency. Lupoglazoff and Vuilloeo 
obtained the same periodic mechanism at a frequency equal to 2540 Hz. A comparison with their 
results has been made and the agreement is good. The coupling procedure is very sensitive to the 
position of the shear layer origin (,Yo). Lupoglazoff and Vuillot,20 using Flandro's method, show that for 
241 f Xo < 285 mm, mode 2L should be unstable while mode 1L should be stable. This is in 
agreement with the numerical simulation results, because in this case Xo is in this range. 

For this case we did the computation with and without the flux-splitting technique. Some important 
differences appear and will be analysed. A damping effect is introduced when the flux-splitting 
technique is used. Table VI gives the head-end pressure and thrust obtained for these two cases. The 
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Figure 6. Time histories of headend static pressure for case I: a, CFL = 460; b, CFL = I 15; c, CFL = 46 
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Figure 7. Time history of hcad-end static pressure for case 11: a, complete history; b, 'zoom-in' ensemble 
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mean values are slightly different. An important difference appears for the amplitude of the 
fluctuations. 

Figure 9 presents the isovorticity contours obtained with and without flux splitting during one period 
(f=2570 Hz). In the mixing layer, coupled with acoustic oscillations, a periodic vortex shedding 
occurs. The interaction process can be quite complex; its essential mechanism may be described in the 
following simple manner. A shear flow is produced at the downstream end of the grain. Because the 

Table VI. Pressure and thrust 
- 

AP (Pa) p Pa) W) l7l W) 
With flux splitting 4655 0.464 x lo6 456 0.199 x lo5 
Without flux splitting 6379 0.466 x lo6 530 0.202 lo5 
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Figure 9. Isovortkity contours during one period ( f= 2570 Hz): a, with flux splitting; b, without flux splitting 

velocity gradient is sufficiently large, this shear layer is unstable and small disturbances in the vicinity 
of the origin are spatially amplified, forming vortex structures. These vortices translate in the axial 
direction. A vortex impinging on the nozzle generates an acoustic disturbance. This acoustic 
disturbance propagates upstream and perturbs the shear layer origin. The consequence is the formation 
of vortical structures. The process is thus self-sustaining. 

The flux-splitting effect can be observed in Figure 9. The isolines are irregular without this 
technique and are smoothed when it is introduced. To make the computation without flux splitting 
possible in this case, we start by using this technique to obtain an initial solution. Few iterations are 
needed (2000 iterations). With this solution we continue the calculation without flux splitting, which 
turns out to be necessary only for the transient period. This procedure will be adopted for computing 
the unsteady case with this code. 

The test case computed is based on a segmented motor model and represents configuration A of the 
ONERA LP3 experiment. 

Figure 10 shows the iso-entropy and velocity field at different times. It can be clearly observed that 
even this coarse mesh the vortex shedding is captured. The formation of the vortex can be seen and a 
pairing mechanism takes place. The new vortex resulting from the pairing mechanism is absorbed by 
the n o d e .  The vortex mechanism is mom complex than in the previous case. In the present case, 
different vortices with different sizes exist in the flow and complex non-linear interactions can appear. 
The signals obtained are not monochromatic and contain complex physical phenomena. Figure 11 
presents the time evolution of the thrust. The velocity and pressure spectra confirm this complexity. In 
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Figure 10. Iso-entropy and velocity field at different time stations for case 111 

fact, the spectra exhibit many peaks, as can be observed in Figure 12. The axial evolution of the spectra 
provides information on the non-linear vortex interaction. Near the shear layer origin, three dominant 
peaks (600, 1200 and 1800 Hz) are present (Figure 12a). The initial roll-up process is found to 
correspond to 1200 or 1800 Hz. The peak at 600 Hz indicates a pairing of two vortices emitted at 
1200 Hz. Moving downstream, peaks corresponding to pairing of two (900 Hz), three (600 Hz) or four 
(450 Hz) vortices emitted at 1800 Hz occur. In fact, the pairing of vortices is directly related to the 
development of the ~ubharmonics.~~ Also, the pairing mechanism constitutes one of the most striking 
features in the mixing layer dynamics.33934 Moreover, the peak at 750 Hz corresponds to the fist 
acoustic mode of the cavity between the second segment and the throat. 

A full analysis of this case is in progress. Also, in the future a denser mesh will be used to show the 
mesh effect and provide a more comprehensive look at the flow. 

t ( s )  t ( s )  

Figure 1 I .  Time history of thrust for w e  111: a, complete history; b, ‘zoom-in’ ensemble 
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Figure 12. Spectra of U-component in mixing layer for case 111: a, x / L  = 0.575, r/L = 0.025; b, x/L = 0.63, r/L =0.025; 
c, x/L = 0.745, r/L = 0.025; 4 x/L = 0.86, r/L =0.026 

4. CONCLUSIONS 

The present study has been devoted to the simulation of an acoustic boundary layer and the vortex- 
shedding mechanism in a rocket motor. It has shown the feasibility of the simulation of these physical 
mechanisms. It has also shown how to optimize the method selected to better simulate the unsteady 
flow behaviour and the wave acoustic propagation. 

The implicit version can be used to simulate the unsteady character only with low CFL numbers 
(<SO). With increasing CFL number an increasing damping of unsteady fluctuations appears and the 
acoustic wave can be modified. Also, if the CFL number is too large, no unsteadiness can be predicted. 
With the explicit version of the code it is possible to fully predict the unsteady flow. The explicit 
version can be used with or without the flux-splitting technique. With this option the scheme is stable 
but more dissipative and introduces a damping effect in the unsteadiness. Without this technique it was 
possible to correctly predict the unsteady character. For this case the flux-splitting technique is only 
necessary for the transient period (initial phase). 

The first case computed involves an acoustic boundary layer that develops above the burning 
propellant of a solid rocket motor. The results concern a standing acoustic wave regime that is 
established through pressure forcing at a given frequency. The second test case concerns the capture of 
the vortex-shedding phenomenon in a 2D planar configuration. The vortex shedding is predicted and 
its frequency corresponds to the second axial mode frequency. The last configuration studied is more 
representative of the solid rocket motor. In this case the vortex-shedding mechanism is correctly 
predicted. This mechanism is not monochromatic as in the previous case. The spectra &splayed more 
than one frequency and its harmonics. The pairing mechanism is detected. This case will be hlly 
analysed in the future. 
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APPENDIX: NOMENCLATURE 

speed of sound 
Jacobian matrix of F 
amplitude 
Jacobian matrix of G 
total energy 
fresuency 
flux in axial direction 
flux in transverse direction 
chamber half-height 
vector of source terms 

chamber length 
injection mass flow rate, @v)in, 
Mach number 
pressure 
Prandtl number 
transverse co-ordinate 
perfect gas constant 
Strouhal number 
time 
temperature 
flame temperature 
injection stagnation temperature 
thrust 
axial or longitudinal velocity 
transverse velocity 
propellant burning rate 
vector of conservative flow variables 
axial or longitudinal co-ordinate 

length 

coefficient of pressure forcing 
ratio of specific heats 
thermal conductivity 
dynamic viscosity 
density 
propellant density 
strain tensor 
phase angle relative to head-end pressure 



VORTEX SHEDDING IN SOLlD ROCKET MOTORS 465 

REFERENCES 

G. A. Flandro, ‘Vortex driving mechanism in oscillatory rocket flows’, 1 Pmpuls. h e r ,  3,206214 (1986). 
R. S. Brown, R. Dunlap, S. W. Young and R. C. Waugh, ‘Vortex shedding as a source of acoustic energy in segmented solid 
rocket’, 1 Spucecmfi, 8, 312-319 (1981). 
L. K. Issacson and A. G. Marshall, ‘Acoustic oscillations in internal cavity flows: nonlinear resonant interactions’, AIAA 1, 

F. Vuillot and €! Kuentzmann, ‘Flow turning and admittance correction: an experimental comparison’, 1 Pmpuls. Power, 2,  

W. K. Van Moorhen, ‘Flow turning in solid-propellant rocket combustion analyses’, A I M  1, 20, 142C1425 (1982). 
L. L. Nmyanaswami, B. T. Zinn and B. R. Daniel, ‘Experimental investigation of characteristics of solid-propellant, 
velocity-coupled response fictions’, AIM 1, 25, 584-591 (1987). 
A. Flatau, ‘Vortex driven sound in a cylindrical cavity’, Ph.D. Thesis, University of Utah, 1990. 
G. A. Flandro and H. R. Jacobs, ‘Vortex generated sound in cavities’, AIM Paper 73-1014, 1973. 
F. E. C. Culick and K. Magiawala, ‘Excitation of acoustic modes in a chamber by vortex shedding’, 1 Sound and f ibr ,  64, 
455457 (1979). 
H. Nomoto and F. E. C. Culick, ‘An experimental investigation of pure tone generation by vortex shedding in duct’, 1 Sound 

W.-H. Jou and S. Menon, ‘Simulation of ramjet combustor flow fields, Part lI4gin of pnssure oscillations’, AIAA Puper 

R. Dunlap and R. S. Brown. ‘Exploratory experiment on acoustic oscillations driven by periodic vortex shedding’, A U A  1, 
19, 408409 (1981). 
R. S. Brown, A. M. Blackner, F! G. Willoughby and R. Dunlap, ‘Coupling between acoustic velocity oscillations and solid- 
propellant combustion’, 1 Pmpuls. Power, 2 ,  428-437 (1986). 
F. Vuillot, ‘Acoustic mode determination in solid rocket motor stability analysis’, 1 h p u l s .  Power, 3, 381-384 (1987). 
W.-H. Jou and S. Menon, ‘A mechanism of the acoustic-vortex interaction in a ramjet dump combustor’, A U A  Paper 86- 
1884, 1986. 
K. Kailasanath, J. H. Gardner, J. P. Boris and E. S. Oran, ‘Acoustic-vortex interaction and low frequency oscillations in 
axisymmetric combustors’, A U A  Paper 87-0165, 1987. 
S .  Menon and W.-H. Jou, ‘Numerical simulation of oscillatoty cold flows in an axisymmetric ramjet combustor’, 1 Pmpuh. 
Power, 6, 525-534 (1990). 
S. Menon and W.-H. Jou, ‘Largeaddy simulation of combustion instability in ramjet combustor’, A I M  Raper 9c0267, 
1990. 
F. Vuillot and G. Avalon, ‘Acoustic-mean flow interaction in solid rocket motors using Navier-Stokes equations’, Pmc. 
AIAA/ASEE/ASME/SAE 24fh Joinr propulsion Conf Exhib., Boston, MA, AiAA Paper 88-2940, July 1988. 
N. Lupoglazoff and F. Vuillot, ‘Numerical simulation of vortex shedding phenomenon in 2D test case solid rocket motors’, 
A I M  Paper 92-0776, 1992. 
J. D. Baum and J. N. Levine, ‘A critical study of numerical methods for the solution of nonlinear hyperbolic equations for 
resonance systems’, 1 Compur. Phys., 58, 1-28 (1985). 
R. W. MacCormack, ‘A numerical method for solving the equations of compressible viscous flow’, A I M  Paper 81-0110, 
1981. 
R. W. MacCormack, ‘Cumnt status of numerical solutions of the Navier-Stokes equations’, A I M  Puper 85-0032, 1985. 
J. L. Steger and R. F. Warming, ‘Flux vector splitting of the inviscid gas dynamics equations with application to finite 
difference method’, 1 Compuf. Phys., 40, 283 (1982). 
A Kourta and H. Ha Minh, ‘CAS TEST CO: couches limites acoustiques’, Conhat C N E W N E R A  89/3640, 1991. 
F. E. Culick, ‘Rotational axisymmetric mean flow and damping of acoustic wave in a solid propellant rocket;, AIAA 1 , 4 ,  

R. Dunlap, F! G. Willoughby and R. W. Hermsen, ‘Flowfield in the combustion chamber of a solid propellant rocket motor’, 
A U A  1, 12, 1440-1442 (1974). 
G. A. Flandro, ‘Solid propellant acoustic admittance corrections’, 1 Sound fibs, 36, 297-312 (1974). 
F. Godfroy and F! Y. Tissier, ‘Simulation of unsteady flows inside solid propellant rocket motors’, Colloq. C N E W N E R A ,  
vol. 9, Paris, December 1992. 
A. Kourta and H. Ha Minh, ‘Phhom&ne de dktacheme-nt tourbillonnaire dans un moteur B propergol solide’, Conhar CNES- 
ONERA 89/3640, 1992. 
N. Lupoglazoff and F. Vuillot, ‘Comparison between firing tests and numerical simulation of vortex shedding in 2-D test 
solid motor’. A U A  PUDW 93-3066. 1993. 

20, 152-154 (1982). 

345-353 (1986). 

f ibs ,  84, 247-252 (1982). 

87-1422, 1987. 

1462-1464 (1966). 

1. 
2. 

3. 

4. 

5. 
6. 

7. 
8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 
24. 

25. 
26. 

27. 

28. 
29. 

30. 

31. 

32. C. M. Ho i d  P.Hu&, ‘d free shear layem’, Annu. Rev Fluid Mech., 16,365424 (1984). 
33. A. Kourta, M. Braza, F! chassaing and H. Ha Minh. ‘Numerical analysis of a natural and excited hkro-dimensional mixing 

34. A. Kourta, H. C. Boisson, €! Chassaing and H. Ha Minh, ‘Nonliner interaction and transition to turbulence in the wake of a 
layer’, A I M  1,25,279-286 (1987). 

circular cylinder’, 1 Fluid Mech.. 181, 141-161 (1987). 


